ROBERT

The Ventilation of Tunnels

Civil Enginecring

B. S,

1909

THE VENTLLATION OF TUNNELS

JOHN ALCIDE ROBERT

THESIS

FOR THE
DEGREE OF BACHELUR OF SCIENCE
IN
CIVIL ENGINEERING

IN THE
COLLEGE OF ENGINEERING:
UNIVERSITY OF IULINOIS

PRESENTEED. JUNE, 1909

$$
1909
$$

UNIVERSITY OF ILLINOIS

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

JOHN ALGID ROBERT

ENTITLED

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF- Bachelor of Science in Civil Ingineoring

APPROVED:
 Instructor in Charge
e

TABLE OT COMTETTS

IITMROIJUCIION

Page

OBJECT OR VEMTIIATION. 1
COITSIDJRAMIONS IIVOUVID. 1
Allount on air reointem I
SOURCES OT FOUL ATR. 2
GEITRAL ERGICTIS OP FOUL AIR. 3
 3
RESUITS OF POOR VETTILARIOIT. 3
BXA:ITISS
Pracchia Tunnel 4
Ponte Decimo Tunnel. 5
Ūsui Railway Tunnel 5
VEMTRILATIOM DURIMG COMSTRUCHION
OPINIOIS OT EITGIMERS 7
COMDITIONS IN MODERT RUNTELITG 8
USTR OT COLPRTSSEP AIT 9
Dangers Involved 9
Amount of Air Required 10
Lhethod of Ventilating 10
FATIS 11
Plant for Exhausting Toul Air. 12
Brhaust Pipe. 12

Digitized by the Internet Archive in 2013

Parge
There Used 12
EXAIPITSS
Cascade Iunne 1 13
Simplon Tunnel. 14
COMBITATIOTT OF FATS AITI COLPRESSED AIR. 17
Fosition of Fans. 18
TUURTACE ATD CHIMET 19
Ventilating Ilant 19
Air Currents. 19
EXAIPIES
Hont Cenis ঙunnel 21
Noorhouse Iunnel. 21
PTRLATEATL VETMIATIOT OT COMPTETH.) MUNELS
PENLANDMT VEMTIIATIOIT. 22
IIPROVIITG THE VEMTIIATION. 22
DIREC 1ETHOD. 23
IMDITECI ITHTHOD. 23
ITATURAI. VTITIJAMIOM
Classes of Tunnels 24
Short Tunnel. 24
Effect of Direction of Wind. 24
Position of Portal 25
Grade 25
Long Tunnels. 26
One Shaft. 26
Two or llore Shafts. 27
Advantage of One Shaft 28
Page
COMDITIONS RHAR ETTTCT VEMTITATIUIT 28
Temperature 29
Wind and Trains 29
EXAIPIES
Box Tunnel 29
Sapperton Tunnel 30
Conclusions 31
Iow Yort subway 31
ARTIFICIAT VEMTIIATIOM
SACCARDO SYSIMM. 34
Ventilating Plant 35
Advantage of This System. 35
Adapted to Iong Tunnels. 36
EXAPIES 36
St. Gothard Iunnel 36
Giovi Tunnel 36
Big Bend Tunnel 36
Elkhorn Tunnel. 39
EXIAUST CURRIMTMS RTOLA FANS 44
Position of Tan. 44
Method of Ventilating 45
Arrangenent of Fans 45
BYAMPIES
Hoosac TunneI 45
Boston Subrray 46
East Bostion Iunnel 46
Hersey Tunnel 47

IMMPODUCIION

OBJHCI OF VENTIARION. - The ventilation of tunnels, whether in the process of construction or in actual operation, is one of the troublesome problems presented to the engineer. In the one case the fumes arising from the blasting charees have to be removed as speedily as possible from the headings in order that no time be lost in cleaning away the broken rock; and, in the other case, the air vitiated by the gases arising from the combustion of coal has to be replaced by fresh air. From these facts it is secn that the main problem which arises, is to find a quicls and econorical method of expelling the foul air produced, and to replace it with a supply of fresh air in such quantities as to insure health to all morkmen employed, and also an ample degree of safety from accidents to the daily trafific through the tunnel.

COMSIDIPAIIONS IMVOLVED. - In view of these facts there are many considerations involved, and each has to be treated separately to suit the existing conditions at the tunnel. The most important of these questions that arise are: the amount of air that is required to be supplied in a given time in order that proper ventilation may be sccured, the sources of foul air and its effect upon the men working in the tunnel, and the effect that a good ventilating system will have upon the traffic.

AFOUNT OF AIR REQUIPHTD. - The amount of air that is required to insure proper ventilation varies in the opinjon of different engineers, but it has in generel been conceded that so long as
the amount of carbon dioxide does not exceed 20 parts in 10,000 by volume of air, the air in the railroad tunnel is satifactory. This is about the same proportion that is found in closed assembly halls and churches after a Ione lecture, and it; is known that so long as the amount of carbon dioxide does not exist in greater quantities no ill effects will be observed. Noreover, in a few cases men have been know to work in an atmosphere containing 30 parts of carbon dioxide in 1,000 parts by volume of air, an amount sufficient to extinguish a candle, and have felt no ill effects. However, such conditions are not advisable.

SOURCES OF FOUL AIR.- The sources of foul air are various. During construction noxious gases arise from the lemps and torches used to light the interior of the tunnels where electric plants are not used for lighting. The respirations of men and beasts also cause objectionable odors. However, the principle source of noxious gascs is blasting, and the fumes that arise from the explosives are so dense that they must be cleared from the working face before the men are able to resume their work.

In the completed tunnel these gases arise from the combustion of coal. On this subject Francis Fcz, Il. Inst. C.F., says that from his experience the combustion of coal by a locomotive in its passage through a tunnel gives approximately 29 cubic feet of poisonous fases for each pound of coal that is consumed. Knowing the amount of fuel consumed per mile, and multiplying this amount by 29, then by 500, and dividing the product by the number of minutes in the interval between trains, will give the amount of air in cubic feet per minute that must be introduced into the tunnel.

GEITPRAL IFFFECTS OF TOUL AIF. - The Eeneral effect of foul air in the tunnel upon the workman is to cause him to have headaches and in most cases nausea. Aside from any injury to his health that may be contracted from this effect, the economical corsiderations must be talen into account. In foul air the men necessarily worls slower and the progress is retarded. In a well ventilated tunnel they are able to work with comfort and vigor. The progress is increased, and the additional cost of ventileting is more than compensated for by the additional amount of Work that is accomplished in a given length of time.

GOOD VITNITATITG SYSTEM IS ESSEMMIAT.- During the operation Of the tunnel a good ventilating system is essentiel. It clears the atmosphere in a comparatively short period of time, and allows an increase in traffic through the tunnel. The interion and especially the rails are kept free from moisture. llany accidents have been caused by slippery rails especially on steep grades. rhe dangers due to this cause, therefore, are entirely eliminated.

RESUITS OF POOR VHMIIARION. - Trgineers now recognize the necessity of a continuous change of air. This is necessary for two reascns, first, to maintain the purity of the air, second, to regulate the moisture which it contains and prevent it from collecting on the valls, where it calises a chilling sensation to one entering the tunnel. Furthormore, with a slow and uncertain movement of the air it may easily be cooled below the dew point and become saturated, in which state it would be disagreeable and unhealthful. This darmess also has the sarne affect upon the rails as indicatcd above. A damp interiol causes a
rapid oxidation of the rails and decreases their life. Observations nade upon the effects of oxidation of rails in the Box tunnel of the Great Western Railway showed that in this tunnel, which was poorly ventilated, the wear due to this cause averarged $2 I / 2$ pounds per yard per annun, as compared with $I / 4$ pound in the open air.

Hany accidents have occured in tunnels due to poor ventilation. Some, directly caused by poor ventilation, Where the engineer and fireman were rendered unconsious by the gases of combustion; and others, indirectly caused by the brealsing of rails that were badly oxidized, or by rails made slippery by the humidity of the air. Several illustrations are given below oi accidents that have resulted from the existence of such conditions in tunnels.

PRACCFIA TUNIEL. - The Pracchia tunnel, betrreen Florence and Bologna in Italy, before the Saccardo systen of ventilation was installed, will afford a good illustration of some of the results of poor ventilation mentioned above. The tunnel is 9,000 feet long and is built upon a gradient of I in 40. Tinder any conditions due to winds, the state of the tunnel is bad, but when the wind is blowing in at the lover end at the same time a heavy train is ascending the gradient, the air becomes so vitiated that it is almost unbearable. The enginc in order to climb the grade must work with the regulators wide open and emit large quantities of smoke and stean which travels along with the train. The stean condenses and moistens the interior, causinc the viheels to slip and possibly stops the train. When the conditions of the air becomes suffocating. On one occasion a heavy train with two engines, conveying a royal party and their suite, arrived at the
upper exit of the tunnel with both engine drjvers and firemen insensible.

POITHE DECIMO TUNJJ工. - Another exarmple of bad ventilation occured in 1898 at the Fonte Decimo tunnel near Genoa, Italy. In this case a heavy goodstrain with three engines was going through the tunnel when it; slipped and cameto rest upon a steep gradient. The engineers and firemen were all rendered insensible by the unbearable conditions of the air. The train then ran bacle by gravity to the lowel end of the tunnel and crashed into a passenger train which was waiting to ascend the gradient. The result caused 12 people to lose their lives and 40 other's to be injured.

USUI RAILIFAY TUMIELS. - On the Usui Railway in Japan several tunnels were built with a gradient of 1 in 15. When locomotives began running the difficulty of keeping up steam was very great andthe fires had to be forced to their utmost. Therefore, instead of burning 32 pounds of coal per mile as Mr. Francis Fox, M. Inst. of C.T. assumes from his experience in connection with the ventilation of tunnels; the coal consumption in trials conducted for the government was no less than 250 pounds per mile and in one case reached 268 pounds per mile. This caused the smoke to become so dense in the tunnel that two persons standing side by side upon the foot plate were unable to see each other. On a day previous to the trial the steam in one engine gave out and caused the engine to stop in one of the tunnels. The engineer was nearIy choled and the natives had to lie face dom upon the ballast in order to breath: To remedy these defects various schemes were proposed for ventilating the tunels. A very primitive method
was finally adopted of hanging a curtain at the lower entrance and closing it as soon as the train had passed into the tunnel. This stopped the draft of air following the train to some decree and enainled the train to liberate itself from the gases as it passed up the crade.

VEMILATIOW DURIMG COMSTRUCTION

OPINIONS OF EITGIITGRS. - Ingincers in charge of the tunnels that have been built in recent years have seen the advisability of proper ventilation during construction. Good examples of this are found in the driving of the Cascade tunnel for the Great Morthern Railway, in the notable Alpine tunnels, the St. Gothard and Simplon, and also in the Kellog tunnel at the Bunner Hill and Sullivan lines in Idaho. Several other notevorthy examples could also be mentioned. Today there are very few tunnels constructed in which suitable means cannot be found for supplying fresh air to the worising face. The supplying of fresh air to the working face has became more prominent in recent years and owes nuch of its developement to the modern use of hich explosives and dense fumes arising therefrom. In the recent tunnels that have been constructed special attention has been given to this subject with very good results, particularly in contract work where it is an important item in the expense account that the driving progress as speedily as possible. Good examples of this have been brought out in the construction of the st. Gothard and Simplon tunnels, the daily procress of which greatly surpassed that of all tunnels built in years previous.

Not only is pure air advantageous for ravid progress in the work, but it is also essential to the health of the workmen employed. In actual practise these two conditions are dependent unon eaci other to a considerajle extent.
 a charge has been fired, the only time that can be considered lost, is that occupied in the reracval of debris resulting from the explosion. Hence it becomes very important to clear the broken rock away in order that the drilling tools can be set to work and actual pogress in drilline resuned. To accomplish this end it is essential to have a strong current of fresh air reacin the woiking face almost imediately after the charge has been fired in order that the dense fumes may be quicinly cleared from the headings. The methods of accomplishinc these results will be dealt with farther along, when the separate methods are described. Pure air during construction is of vital importance for the welfare of the morknen. If he is compelled to mork daily in an atmosphere containing a large percentace of carion dioxide, the principle gas that arises from the combustion of explosives and decayed natter, he is affected with a drowsiness that he cannot overcome unless fresh air is furnished to him. Whon the wrorrnen are in this condition, the work must necessarily progress much slower than it would otherwise; and besides, it is liable to inflict lastinç injurics upon the men. Accidents also occur more frequently then such conditions exist than at other fimes. These, at times, prove to be costly to the contractor or company in charge of the worls. Therefore in order to malke rapid progress in the driving of tumnels, to carry the project through with the minimur cost, and to insure perfect health to the workmen, the foul air should be expelled at once and a goodly axnount of frsh air supplied. On account of the first cost involved the contractor is likely to overlook these facts,
but when cverything is talken into consideration the expense will be less in the lons run.

The different types of tunnel ventilation dusing excavation will now be explained.

USE OT COIPRESSED AIP. - The use of compressed air in tunneling is employed only in subaqueous woris, usuaily not more than 100 feet below the surface of the water. In this connection a device Lnorm as the aic-lock has to be cmoloyed for passing from the outer air to. the working chambers filled with the compressed air. This enables the workman to pass at will from one air pressure to anotier. In order that no injurious effects may result, a suitable lencth of time should elapse before he proceeds from one chamber to another. The chief danger in this regard is that the men may pass through the chambers in too great haste, not allowing proper tine for equalization of the air pressure in the locks. This sudden transition from a high pressure to the normal atrospheric pressure aifects the human organism and has proven fatal to some workrnen, depending somerhat upon their constitution and physique before entering the lock. A strong and robust man is better able to withstand the effects than one who is weaker.

Dancers Involved.- In eoing from atmospheric pressure to highor pressure in the locks the air is absorbed by the blood and carrics with it any gaseous impuritics that it may contain. Thus if the air is high in carbonic-acid gas the blood receives that impurity. In cominc out of the compressed air the persons must be locked out slowly. Should they come out quickly bubbles of air form around the outer parts of the body, and the blood coming
in contact with them has a tendency to coaçulate. In the post morten examinations on different people who have met death in this manner, the veins and arteries on being cut open were found to be filled with coacrulated blood.

Amount of Pure Air Required. - The anount of air required for men working in compressed air chambers differs somewhat from that used in ordinary tunneling. It was seen that in the latter case 20 parts of carbonic acid per 10,000 parts by volume afforded satisfactory conditions for ordinary wors, and that even some men had worked in 30 partis of carbonic acid per 1,000 parts by volume without feeling any ill effects. But in compressed air the conditions differ. In a morking pressure of 20 pounds per square inch a percentage above 1 or II/4 parts of carponic acid in 1,000 parts by volume was felt by some men. To more an araple allowance for ordinary worle, about 3,000 to 4,000 cubic feet per hour of pure air should be supplied to each man to insure good ventilation. Even less than this mould do at 30 pounds pressure per square inch. Tests nade alonç this line with an expert diver resulted in the proof that he was satisfied with only 250 cubic fect per hour. However, this is exceptional, and was probably due to the fact that he was more accustomed to such conditions than the average person would be.

Hethod of Ventilatinf.- The method in which the ventilating is carried on is quite simple. It is usually the case that air is pumped in at a little higher pressure than required to keep the water out of the caisson or shield. This enables the air to leak out around the edge of the working face and thus supplies a continuous circulation.

Other means are also employed. The air is pumped int:o the working chanber at the top and telsen out under pressure fron a pipe connection near the bottom. The first method, however, is the one usually ermloyed, as the air leaking around the edge has a tendency to lubricate the shield and allow it to be moved along more casily.

In ordinary tunnel Torls compressed air is often employed indirectly as a means of ventilation. This, however, is used only in tunnels where compressed air tools and motors are used exclusively to carry on the worls of construction; the principle being that the exhausts from the different air tools and engines will.be sufficient to clear the headings and main cross sections from smoke and geses, and to render the atmosphere in the tumel satisfactory for working conditions.

FATS.- In tunnel construction the heading is usually cleared by leadinf a tight but light weight pipe as near to the working face as possible, and then sucking or blowing out the foul air by means of a fan of suitable size, located at the portal or at the top of the shaft. In ordinary operations the working conditions do not warrant the use of more elaborate appliances, but in some cases, where the worle is of great magnitude, as was that of the Simplon tunnel, a parallel tunnel of snaller dimensions than the main cross section may be driven, the two tunnels being joined at suitable intervals by means of cross cuts. The foul air at the headings can then be exhausted either through the main tunnel or through the smaller one at the side, or else fresh air can be forced directiy into either tunnel. The methods used for exhausting the foul air will now be taken up.

Plant for Exhausting Foul Air.- The ventilatinc plant in this case consists of a suitable fan, or fans, together with all the necessary accessories for operating them successfully. The location of the fans should be near the portal or near the shaft of the tunnel, the location depending upon whether the portal or shaft is being used to carry on the work of construction. The fans should always be in such a position as not to interfere With the progress of the work.

Exhaust Pipe.- The pipe through which the foul air is exhausted should be of light construction, and made of a metea that does not corrode easily. The dianetcr of the pipe should be sufficient to allow a specdy withdrawal of all the fumes resulting from blasting. As a rule, the pipes are laid in sections, the lengths of the sections being governed by the existing conditions, but are usually never greater than 16 feet in length. The joints are made air tight and the whole pipe protected ascainst mechanical injury by a suitable cover, usually made of boards. As a further protection it should be laid along one side of the tunnel where it will not interfere with the operations of the mucis and material-cars.

Where Used.- The form of tunnel in which this method is used for clearing the headins is that in which a single entry is being driven. It is also used at times in double entry tunnels When one of the headings has become far advanced through accidental delays that may have occured to the other. This forms a cheap and economical system for ventilating, and also one that does not require much time or labor in its construction and operation.

Cascade Tunnel.- In the case of the cascade tunnel the foul air was exhausted from the headings through a $2 \triangle$ inch gialvanized iron pipe by means of a jFo. 9 Sturtevant fan running at 1700 revolutions per minute. These exihaust pipes were made in 16 foot sections and bolted together by cast iron rings with friction paper washers between the rings. The ventilation in this case was claimed to have been excellent, from 10 to 20 minutes being sufficient to clear the headings after a blast. In this case the supply of fresh cool air was increased matcrially by the large amounts of air liberated by the drills, hoists and pumps located near the heading.

The other method mentioned above, that of blowing in the fresh air directly through the tunncl and forcing the vitiated air out through the side drift or secondary tunnel, will now be considered.

The ventilating plant is similar to that montioned above with the exception that no shafts are used, the fans almays being located near the portals of the tunnel and arranged in such a manner that they may be used cither as a blower or as an exhaust. In tinis connection the fans are usually arranged with suitable curtains and in such a manner that by simple operations of the curtains the air from the fans may be diverted from the tunnel to the side drift, or vice versa when the fan is acting as a blower. The same conditions also hold good then the fan is running as an exhaust, that is, the foul air nay be exhausted either through the tunnel or side drift. The only tunnels in which this system of ventilatins may be employed are those in Which the double entries are being driven. The reason for this
is apparent at once, for were it not for the cross cuts and side drifts the fresh air forced into the tiunnel would only dilute the gases and not force them out through the portal. But as it is, a complete circulation is produced and the gases are carried out with the air currents.

One of the most remarkable cxamples of this form of ventilation is found in the construction of the Simmlon tunnel. This is one of the most notable tunnels ever constructed and besides is the longest ever driven, the total length being lz. 4 miles.

Simplon Tunnel.- Fo: ventilating the Simplon tunnel during and after construction a permanent ventilating plant, consisting of two $200 \mathrm{~F} . \mathrm{F}_{\text {. }}$ turbjnes and two fans 22.5 feet in diameter, was installed at each end of the tunnel. The arrangement of the two plants differed somewhat. At the Swiss end, which is located near the town of Brieg, the fans are placed one above the other close to the portal and the air passagc carried across the roof of the tunnel. At the Italian end, near Isdle, the fans are placed one behind the other. The air nasses first to a ventilator house and from there through a passage-may to the tunnel. Nither plant can furnish a maximum of 106000 cubic feet of air per minute at a gage pressure of 9.85 inclucs of water.

The original plans of the Simplon tunnel were somewhat modified before construction worl: began. It was at first proposed to build two single track twin tunnels spaced 55.76 feet center to center, but later it vas decided to open only one of the twin tunnels to its full dimensions and the other to about one-fifth the proposed size. The two were connected at intervals of 656 feet by a transverse gallery laid out on an angle of about 60 degrees

With the axis of the tunnel, this smaller tunnel or side gallery to serve for drainage, ventilating and other scrvices connected with the worlc.

The ventilation of the tunnel during construction was accomplished in the following manner. Pure air was forced into the side gallervir by the fans to the most advancec transverse gallery and then back through the main tunnel to the portal. A constant circulaticn was thus provided and all noxious gases carried out irmediately. If the fans were run in the opposite direction, so as to exhaust the air from the side gallery, the direction of the air currents was reversed. In order that the air frow the fans might be forced into either tunnel, a door was placed at the angle of the bifurcation. This door was operated either by hand or clectricity and arranged in such a manner that either fork of the passage could be closcd at will, thus causing the air to be forced into, or exhausted from, either the main tunnel or the side gallery. Sail cloth curtains operated in the same manner closed the portal of the tunnel. Iater these sail cloth curtains were replaced by steel curtains.

As mentioned above the two curtains mere connected at intervals of 656 feet, so that when the headings were advanced farther than the last transverse gallery a dead end resulted in that portion of the tumel. Then the distance was not too great, the exhaust air from the drills and punps was sufficient to keep the air in good condition. If, hovever, the headinc was too far advanced to insure good ventilation at the working face in this manner, another method was emplcyod. A fan was placed in the last transverse gallery, and from there, the pure air coming from
the plant near the portal was fosced through a l4 inch pipe up to the working face. The noxious gascs were thus driven back toward the portal. In this connection it, should be mentioned that the other transverse galleries mere sealed as the worle progressed to prevent a short circuiting of the air currents.

In driving the Simplon tunnel considerable heat was encountcred in the rock and artificial means had to be used for cooling the headings. The method of cooling the air was practically the same at both ends. Cold water was pumped from the river Whone at the Swiss end, and from springs encountered in the tunnei near the Italian end, through 10 inch pipe laid along one side of the service callery. This pipe conducted the cold water to the working face where it was broken into a spray and cooled the air in the headings. In order that the water should remain cold until it, reached the headings, the water pipe was insulated by jacketing it with a larcer pipe and filling the annular space with charcoal.

As installed the ventilating plant at either end was much larecr than required. Tnder usual conditions one fan operating so as to give a gage pressure of $21 / 3$ inches of water furnished one cubic foot of fresh air per sccond to the working face. When this was increased to a gare pressure of 4 inches of water the current was strong enough to blow out the miner's lamos.

At the Italian end of the tunel previous to the installation of the hydraulic plant mentioned above, a steam ventilating plant was installed near the ventilator house. This consisted of a $10 \mathrm{H} . \mathrm{P}$. engine and a fan. The air was delivered from the fan to the service gallery through a pipe 20 inches in diameter.

When the fan was run at 1200 revolutions per nimute it furnished 70 cubic feet of air per second at a gage pressure of 4 inches of water. This plant was lept in working order during the whole period of construction. The reason for this was that in case of accident to the main plant enough air could be supplied by this smaller plant to prevent a delay in the construction of the tunnel.

COLBITARIOI: OF TAITS AIT COMPRESSTD AIF. - The ventilation of tunnels during construction by means of a combination of fans and cormressed air is probably used in most tunnels. The reason for this is apparent. In rock work considerable drilling must be done and one of the most economical methods of doing it; is by means of compressed air tools. Water is often encountered that must be pumped out, and debris resulting from blasting has to be removed. All of this can be done with compressed air by using air purnos and engines. The advantages derived from their use are many. If steam drills, purns and engines vere used to perform the mork mentioncd above, more or less fumes would arise from the operations, the air in the tunnel would become suffocating, and a lerge anount of air would have to be furnished by fans in order to keep the interior cool and free from gases. If corapressed air tocls are alone used such conditions will not exist. In the operation of the different tools and engines the exhaust air is liberated into the tunnel. This is all fresh air that has been piped in from the fans located near the portal, and therefore has not: been poluted by being brought in contact vith noxious gases. Thus, instead of breathing the foul gases that would arise if other tools were used, the worlmen
breath fresh air brought direct to them from the exterior of the tunnel. This method of feeding pure air from the air engines and tools scoms to be very prominent arnong engineers and is the one gencrally used when the conditions are suitable.

Position of Fans.- This method of providing fresh air for the wrormen does not expel the noxious gases from the tunnel and if no other means is provided the fresh air liberated from the tools and engines will not clear the headings but only diIute the fumes already there. To provide a suitable method of driving cut the gascs and clearing the tunnel, fans have to be uscd. They are generally placed near the portal of the tunnel and exhaust the gases through a suitable pipe laid along one side of the passage way.

Another method is where the rans located near the portal force pure air through the side gallery and then back through the main tumel to the portal. If one or more shafts are used in the construction of the tunnel, fans can be installed near the mouth of the shafts and ventilation provided for in that, way. The general principles involved in this form of ventilating are, that the exhaust from the different air tools and engines be surficient to provide a clear atmosphere in the tunnel, and that the air currents from the fans be sufficient to cool the headings and drive the vitiated air form the tunnel. Where this system is uscd during construction the most advanced headings as well as the remairder of the tunnel can be cleared quickly and the air maintained in a pure condition after the charge has been fired. This method of ventilating was illustrated in connection with the Simplon tunnel so no further examples will be
cited.
FUIIVACII AIVD CHIIITI. - The furnace and chimney have been used to a slight extent to ventilate tunncls during construction, but at present this method is not orten employed. The theory of this form of ventilation is to rarefy the air near the bottom of the shaft or chimney, thus producing a steady current winch draws the vitiated air out of the tunnel through the shaft oi chimey, and causes fresh air to flow in at the portals toward the worwing face. In owder that, this syster shall work to the best advantace a special plent has to be installed.

Ventilation Plent. - This plant, when placed near one end of the tunnel consists of a furnace and chimney, the firebox of the furnace being usually placed a littlc above the top of the tunnel. When the plant is placed at the bottom of a shaft the arrangements are the same. The only difference is that the shaft takes the plece of a chimney.

Air Curents. - The air supply for the combustion of fuel in the furnace istaken through a tight box, opening underneath the fiirebox and extending into the tunnel to the heading. This box is suspended from the ceiling of the tunnel. The operation of this system is quite simple. The fire in the furnace creates a draught up the slait on chimey and the air to produce combustion is drawn from the interion of the tunnel through the box. In this manner a complete circulation of the air currents is provided for. The rresh air enters at the portal, passes through the tunnel towaid the worning face, and returns along the tor throuch the box into the fumace and out throuch the chimney.

Furnace and chimney used in ventilating MONT CENIS TUNNEL

Fig.- 1

Nont Cenis Tunnel.- Whe H ont, Cenis tunnel, which is one of the many alpine tunnels, affords a good illustration of this method of ventilating. An incline chimey was constructied 20 or 30 fect, from the tunnel entrance. (See figure I.) This chimney is 10 inches square, and is built up the slope of the mountain at an angle of 45°. The upper part is vertical. At the foot of the chimey is a large furnace, the fire grate of which are placed a little above the poor of the tunnel. The air is supplied to the fire through a tight wooden box opening undemeath the fire grate and oxtendinf into the tunnel, where it is suspended from the ceilinc. The operation is similar to that already described. This plant was very successful in clearing the smoke from the tunnel during constiruction.

Moorhouse Tunnel.- This system of ventilatine also ceave good results at the lloorhouse tunnel on the Railway between Iyttileton and Christchurch in South Island, New Zealand, built about 1865. The upper portion of the tunnel was partitioned off by a floor or brattice about 9 feet above the rail level, forming a connecting flue with onc of the shafts, which, by rarefying the air, caused a steady current up the shart and drew the smoze away from the working face.

 tunnels is a question that has become moro prominent in later years than ever berore in the history of railaoads. In fomer years arter the tunnel was completed and opened to trafric, natural methods of ventilation were resorted to almost entirely. Some of the longer and larger funnels were provided with ventilatinć plants, but these in most cases were designed improperly, and at fimes wore inadequate or clse wore thoughtto bo uneconomical and not operated as they should have been. This nade the existine conditions little or no better than they vould have been if no artificial methods were employed.

IMPROVITG VGRILARIONT. - In recent years the large increase of the traffic over the different roads, together with the incroase in coal consumption of the modern loconotives, has lead to the adoption of improved systems of ventilatinç. In tunnels that in fomer years wero sufficiently ventilated by natural methods, it has become necessary to provide artiricial means of ventilation, due to the frequenc of trains passing through them. The air in these tunnels, during the jears when traflic tras comparatively light, vas sufficientlu pure in insure saretyr, but becane vitiated by the increased quantities of fumes arisince fron the combustion of larcer quantities of coal and necessitated the use of othor means of purifyine the air than could be omploved under the most favorable conditions of natural ventilation.

These same conditions have also occured in tunnels that were
mechanically ventilated. The plantsat first were able to clear the tunnels of smoke under the conditions that existed, but mere inadequate to lecp the tunnels cleared after the traffic had increased boyond a ccritain point. To get rid of the smoke nuisance caused by the increase in trafric, transportation companies sought improvements in ventilating in two ways, by the indirect method and by the direct method.

DIRECT INTHOD. - In the indinect method of ventilating the aim was to get at the source of noxious gases, and to decrease the causes that produced them. The first step in this direction was to abandon the use of soft coal on the locomotive and to substitute the anthraっite in its place. This in turn was replaced by coke and a little later liquid fuel was adopted. This last method proved to be fairly successful, but conditions have called for even better results. While the smoke nuisance was practically overcome by the use of the latter fuel, the nozious gases were still present and the conditions were little if at all improved so far as health conditions mere concerned. Whis led to the last nesort, the substitution of electricity as a motive power thousin the tunncl. Trom all indications it is by far the most successful with regard to ventilation.

ITIIRECT IIRTHOD.- In the indirect methods of ventilating, the transportation corpanies have installed large mechanical plants, or have increased the pomer of those already in, thus furnishing a posjtive and well controlled ventilation.

For Iurther convenience the subject of ventilating completed tunnels will be divided into two paris, the natural and the artificial methods.

NATURAL VENTIIAMIOMT

Classes of Tunnels.- The completed tunnels that are ventilated by natural means are separated into two classes. The first class is composed of the tunnels that depend upon the action of the wind to drive out the ciases. The other depends upon one or more shafts, the piston action of trains passing through, and the difference in the tomparature betweon the exterior and the interior of the tumel.

Short Tunnels.- In the first class the tunnels are usually short, not over 3000 feet long, and depend upon the direction of the wind, position of the portal, and the grade of the tunnel for their ventilation.

Effect of the Disection of the Wind.- If the wind is blowing toward the portal, the tunnel is supplied with a large quantity of fresh air and the interior is cleared shortly after the passage of a train in either direction. The wind blows straight through from one end to the other and drives out; all the gases. If the mind blows across the portal perpendicular to the axis of the tunncl the cxisting conditions after a train has passcd is not so good. In this case no general current of air passes throuch the tunnel from end to end and it is likely to remain fil of smoke for some time unless the currents of air producod by the piston action of the train are of surficient strencth to clear it. Whis is gencrally the case in short tunnels but the time required is considerabl:r longer than when the wind blows out all the fases directly.

Posj.tion of Poutal.- When the ventilation of the tunnel depends upon the wind the position of the portal is an important factor. If the portal is located in a decp cut, its posj.tion may be such that only winds blowing directly along the center line of the tunnel can reach it, and these winds may blow only during certain seasons of the year. If the portal is exposed the chances of proper ventilation are better. The ventilaticn in this latter case is aided by the wind to some extent no matter in winat direction it may be bloming.

Grade. - Another itcm that is important in the ventilating of this class of tunnels, is the grade of the tunnel: If the wind is blowing up the crade, the tunnel is easily cleared of all smoke and foses. The weason for this is that the tunnel resombles in some respect, a long chimmey and the hot, gases emitted by the loconotive in passing through the tunnel, tend to flow toward the higher portal. Now if the wind is blowing in that same dicection it is evident that tho smole will bo quicisly expelled from the tunnel. Such is not the case when the wind is "Iowing dom the grade. The hot gases tending to flow toward the higher portal meet the wind blowing in the opposite direction. The result is tivo opposite forces acting against each other. If they are both equal the tunnel will not be cleased until the gases havo cooled and the wind has forced thom out through the lower poital. This requires a longer time than if the wind had pecn blowing in the opposite direction. Then again if trains should follow each other though the tumel in rapid succession, the interion of the tunnel would be completely filled with smoke until such a time when there :as cessation of traffic of
sufficient duration to allow the cases to flow out. This cessation night not occur for several hours, but, as the time required for a train to pass throuch the tunnel would be comparatively short, one or two minutes, no ill effects would be felt by the train crem and passangers.

Long Tunnels.- When the question cones up of ventilating lone tumels that contain one or more shafts the conditions involved are somewhat different. In long tunnels it is almost essenti al that the tunnel shall be cleared of the siacke emitted from one train before the next is allomed to enter. If the traffic is light, sufficient time nay be provided between trains to accomplish this, but if the traficic is heavy and it becomes necessary to run trains in ravid succession the natural means of ventilating moy not be surficient, and artificial means must be employed.

One Shaft.- If the tunncl has only one shaft open for ventilating purposes it is preferable that the shart be located as near as possible to the center of the tunnel, and that the grade of the tunnel shall slope dow from this central position towards each portal. The reason for this is apparent. Then the interior of the tunnel is warmer than the outside atmosphere, the air curronts will flow up the shaft. The shaft whon placed in a central position with respect to both portals will draw the air and gases from each end of the tunnel with an equal intensity. Mhis clears both ends of the tunnel at the same time. If the temperature of the tunnel is cooler than the outside atmosphere, the air currents will be reversed. The fresin air $\mathfrak{c o c s}$ dotm the shart and drives the gases fron the tunnel throughboth portals. Theoretically, this is what happens, but actually the eddy
currents, and the piston action of trains passing throurg the tunnel, have to be considered. These produce cross currents, and enginecis who have studied the subject differ as to the ad-
visability of using one or more sharts to promote natural ventilation in a lons tunnel. If shafts are used at all, one is preferable to two or more.

Two or more Shafts.- If two or nore shafts are used they should bo spaced equal distances apart throuciout the tunnel. When only two are used they are senerally spaced about one third the length of the tunnel from each portil.

In the case of a sunnel with two or more shafts the general directions of the currents will be the same as explained above for one shaft when the air in the tunnel is not agitated by the passage of a train. If the gencal dircction of the air is up the shaits, the air in the tunnel being warmer than that of the outside atmosphere, and a train enters one end the result is as follows: The train entering the tumel acts similar to a piston and forces considerable air in front, $O f$ it, and tends to produce a gencral current in the same direction as that in thich it is traveling. The air pushed in front tends to escape up the first shaft, carrying with it any eas that may at that time be in the tunnel. The smoke from the engine, due to the otner current mentioned, tends to follow the train. Now when the train has passed under the rirst shaft the suction tends to draw the gases Dack down the shaft, thus reversing the air currents previously started. Thesc same effects happen at all the shafts, producincs many eddies and cross currents, so that arter the train has finally passed through the tunnel, the air and gases are consider-
aily agitated but have no general flow in any direction. The only portions of the tunnel that are cleared of smole are the two end sections betweon the first shaft and the portal, the remainder of the interion is usually filled with smote for a considerable time after the train has cone through. This time is dependent upon the atmospheric conditions, or the time required for the air curients to readjust; thenselves and flow in the same direction as they did berore the tiain passed through. In some tunnels the entire section between shaits has been know to remain full of smore for several days.

Advantare of One Shaft. - At present one shaft in a tunnel is preieraivle to two or more, and some of the tunnels that formerly had several shaits for ventilating purposes are being changed. That is, the shaits are filled ur and the ventilation depended upon by the piston action of tiains, or only one shaft is left open. The advantage is in favor of one shaft, for when only one shaft is used in the tunnel there are fewer cross curients and eddies after the passacge of a train and the tunnel sections betweon the shart and each pontal tond to clear thenselves similar to that where two or more sharts are used. The advantare is that there is no space betwecn shafts which will remain full of smoke. It is also cheaper to Fecp only one shaft in repair than sever21. The cost amounts to considerable when the shafts are deep and lined with stone ob Drici.

COTIITIOTS THAM ETIECR VIMTIIATIOM. - Whether the tunnel uses one or rave shafts in its ventilation there are several conditions that usually aid or retard the proper ventilation of the tumel. These conditions are temperature, wind, and the piston
action of trains mentioned above.
Temperature. - The temperature is an important factor to be considered then natural ventilation is desired. It is the difference in temerature between the oxterior and the interior of the tunnel that causes air currents to pass up or dow the shaits. If the outside andinside temperatures are the same there are no cureents. Then such conditions as these exist and a train passes throurin the tunnel emitting consideramle smoke, this smolse will move backward and forward in the tumel, due to the eddies and cross curnents, but very littic of it will find its may out. The result is that the tunnel will remain full of smoke and the next train going through will have both its own gases and those already filling the tumel to contend with. The danger of accidents under these conditions is more likely to be present because the engineer is unaible to sec more than a short distance ahead of his own train.

Wind and rrains. - the effects of the wind blowing in at the portal, and the piston action of trains going througli the tunnel have been mentioned before so these two conditions will not be further discussed.

Several examples illustirating the venibilatjon of competed tunnels by natural moans will now be given.

Box Tunnel. - The Box tunnel between Chippenham and Bath on the Great Testern Railroad is 9600 fect long, 30 fect wide, 24.5 fect high above the rails and has a lij firade from one end to the other. In the original work of construction seven shafts were uscd iout two of these were closed soon after the tunnel was completed, leaving five open Ior ventilating purposes. These
shafts were 25 feet indiameter and widened out to the full width of 30 feet where they intersected the tunnel. They were all Iined with brick. Whe decpest shait was about 300 feet.

The ventilation of this tunnel depended a great deal upon the weather. If a strong wind was blowing, the smoke escaped Very quiclyy, but in foggy weather it at times became troublesome. The conditions, however, were not so bad but that work could be done at all times in the tunnel. When a train passed through the tunnel going dom grade it produced no perceptible effects upon the air, out ascending trains generally filled the interior with smoke. Fhis tunnel depended mostly upon the quick passafe of trains down the grade for its proper ventilation, and it was found that the shaits impeded rather than assisted the worls of clearing the tumel of gases. The men in charge of the tunnel mould have prefered to close all the shaits and to depend for ventilation upon a natural current from end to end caused by the difference in tempecature, prevailing winds, and the piston action of trains.

Sapperton Tunnel. - The Sapperton tunnel between Sivindon and Gloucester on the Great Westerm Railload is one mile long, 28 feet ride and 20 fect high. The tunnel is built upon a 1. 4% Erade.

Sevoral shafts were uscd in the original construction but all of these have been closer with the exception of one. This one is planked across its lower end where it coincides with the top of the arch, leaving onlت̈ a small hole four or five feet square. This tunel docs not depend upon the sincle shaft for ventilation, but upon the piston action of trains coing down the grade.

When a heavy freight ascends the grade through the tunnel it is usually assisted by a pusher engine and this engine is run dow the grade as soon as the train has passed up. This assists in clearing away the smoke but a passenger train running down the grade at a high specd is found to be far more efficient and is indeed the only erfectual ventilation. If no trains pass down the grade after a heavy freight has ascended, the smoke will renain in the tunnel for hours.

Conclusions.- Suming up the conclusions drawn oy encineers who have had charge of tunnels ventilated by natural means, it is seen that numerous shafts are quite unnecessary for ventilation. The actual ventilator is a fast train passing through the tunnel, and the shafts only interfere with the natural currents which sometimes flow through. Whe limit in the length of tunnels that can be ventilated by natural neans is probably 3000 feet. If the traf: ic is light, natural ventilation may be employed in tunnels of twice that length, but under conditions of heavy traffic all tunnels over 3000 feet should be ventilated by artificial methods.

ITer York Subway. - Ancther example of natural ven ilation is the ITew Yorl: Subway. Although mony subrays aro now provided with soric systen of ventilation requiring the use of fans, by far the Ereatest numer depend for a circulation of air upon currents set up without spocial mechanical sid. The Iow York Subray is a good cxample of this class.

The ventilation is accomplished by the use of blow holes or frec onenines to the outside air, and the current that passes through these openings is sometimes violent. The tern blow role
includes all openings through which the confined air can oscape and through which fresh air enters. These openings are found in the roof of the tunnel, in side chambers, and in the stairways. Qbservations nade with anemometers showed an average velocity of $16 \mathrm{I} / 2$ niles per hour through the stairwass, and if this current were present in half the openines the quantity of air so supplied would have been sufficient to renew the entire air in the subway every few minutes.

To provide for a suitable and relioble movement of the air, a careful study of the direction of the openings with respect to the wind is necessery. This is provided for by a cowl-like kiosks, so that whatever direction the vind nay be blowing the fresh air alvays enters these openings and drives the foul air out through others. These latter are arranged in such a manner that the wind always blows on the back of the hood and the piston action of trains duives the roul air up through then.

By this method a wind traveling at a velocity of 25 miles per hour or 36 feet per second, a common occurence in Tew York at some seasons of the year, will have a pressure of about three pounds per square foot. A wind of 45 riiles creates a pressure of ten pounds. When a breeze of $21 / 2$ niles per hour acts full upon the kiosks, measuring $51 / 2 \times 71 / 2$ feet, over the Mew York Subway, jt is as effective as two fans, cacil siz feet in diameter turning at the rate of 200 revolutions per minute and delivering 21200 cubic feet, of air ner minnte.

In the liew York Subway the piston action of trains is the more irportant facticr in establishine a circulation of air through the blow holes. The principle of the piston action is
as explajned above ror tunnels containinctuo or more sharts. Observations made in the subway with the ordinary train service of early afternoon showed that the air passed from one station to the other at the maximum rate of eight miles per hour. The average rate was threc miles per hour. The approach of a train toward a station could be felt by the flow of air ahead, whon the trajn was over 1000 feet away. In this connection the express trains were of special service in the ventilating. The ieason \mathscr{L}. this was that they passed through the local stations at full speed and by their higll velocity caused especially energetic currents of air to pass in and out of the openings of the stairway and roof.

This method of matural ventiletion of the Ne: Tow Subray has given good satisfaction. During all the hours of the day the air in the submay is freshond cool.

ARMIEICIAI VITMIIATIOM

SACCARDO SESTMP. - The Saccardo system of artificjal ventilation is named after $13,1 \mathrm{cco}$ Saccardo, a, prominent Italian engineer, who first conceived the idea of ventilating tunnels in this manner, that is, of forcine air into one portal ontrance thus aausing another curront of air to be induced in the tunnel. This system of ventilation vas first tried at the Pracchia tunnel on the rajiroed between Florerce and Bologna in Italy. This tunnel is 9000 feet long, single track, and has a grade of 2.5 percent. Before the Saccardo systcm of ventilation mas used, the tunnel Was ventileted solelyby natural means. Tnder any condition of wind the air in the tunnel was bad, but when the wind was blowing at the lower end at the same time a train was ascending the Grade the conditions of the air becane unbearable. Several accidents that have resulted in this tunnel on account of these cxisting conditjons were mentioned in the introduction.

After tihe tunnel was equipped with the Saccardo system several experiments mere made to test its efeiciency. Jefore starting the fans the tunnel was fillod with smolc from end to end. The temperature was 107° I., with gris of mojsture, on nearly complete saturation. With the fan running the temperature in the tunnel fell to 80°, that of the external air. The moisture in the tunnel was nomal. The anount of air propelled by the fans was 164000 cubic feet per minute together with 46000 cubic feet resulting from the induced currents, making a total of 210000 cubic feet
of air passing through the tunnel per minute at a water pressure of one inch.

Ventilatinc Plant. - In the Saccardo system of ventilation the plant is placed at the portal of the tunnel, usually on the up grade end, and the air is blow dowm the incline against the ascending traffic. TO shafts are required as all the apparatus is placed at the portal and the expense of installation is comparatively small.

The method of operation is quite simple. A motor is used to propel the fan and the air from the fan is forced through a sort of nozzle which extends clear around the angular space between the gauge of marimun construction and the interior section or intrados of the arch. This air going throuch the nozzle at a high velocity causes a current of air to be induced through the portal.

Adtuntages of this System. - Whis system of ventilating has several advantages. The air being blown down the tunnel against the ascending traffic clears away the smoke and gases from the engines and supplies the enginecr and fireran with fresh air, thus eliminating the dancer of accidents due to the suffocation of the men on the engine.

The position of the plant is another advantare. By this arrangement sharts are not necessary. It also does away with installation of the plant either at the base or top of the shaft Where it is very inconvenient to the tender. Then again the systern is very efficient as the volume of air entering the tunnel from the fan produces an induced current from the open mouth of from 30 to 100% according to the arrangewents made.

Adapted to Lonf Tunncls. - The Saccardo syster of ventilation is especially adapted to long tunnels that contain no shafts, Or where the shafts were aftermards covered over. Fihis system is not applicable to subvars, as the smole would simply be blown to the next station, just where everythins should be clear.

Examples.- Some of the tunnels that use the Saccaido system of ventilation are: the Fracchia tunnel mentioned above, St. Gothard tunnel, on the St. Gothard Railway from Iucerne to Nilan, Giovi tunnel north of Geneo, Italy, Big Bend tunnel on the Chesavealce and Ohio Railmar, and the Ilkhom tunnel on the Torfolk and Westem Railroad.

St. Gothard. - The St. Gothand tumel is 9.3 miles long and 26 feet wide. Mhis tunnel was provided with a Saccardo system of vontilation by 11. Saccardo, in 1899. The plant was installed at the north end of the tunnel and delivers the current of air in the same direction as the natural currents flow. This plant, Which consists of two blowers, is capable of producing a current of air through the tunnel with a velocity of 552 feet per minute. This is found to be satisfactory.

Giovi.- The Giovi tunnel was ventilated by ll. Saccardo in 1902 and has given good satisfaction.

Big Bend.- The Big Bend tunnel is near Hinton, West Virginia. It is a straight single track tunnel 6500 fect long, 15 feet 3 inches :ride and 17 feet 9 inches high and is lined with brick throughout. From the west end of the tunnel there is an ascending grade of 0.4, for two-thirds of the distance, the remaninder of the distance to the east end having a descending grade of 0.08%

East m

Arrangement of Blast Fans and Nozzle BIG BEND TUNNEL

Fig. - 2

Until mechanical ventilation was inst;alled, in the latter part of 1902, the tunnel was ventilated by natural means, reliance being placed upon two shafts, located about one third the distance from each end, to clear the smoke and gases from the tunnel. After the traffic increased to an average of forty-five trains per day the natural curients were iound to be inadequate for clearing the smose, in fact the gases were very bad and several employees mere seriously affected by them. Iig. 2 shoms the general arcangement of the ventilating plant, which is at the eastern or upper end of the tunnel. It consists of a nozzle 50 fect long, attached to the cast portal the minimum interior cross section of which is the same as that of the tunnel. This nozzle is composed of latticed steel ribs to which are riveted longitudinal channels. This fomas the framework and the whole is corered by one-eigth inch steel plates. The inner surface of the nozzle is formed of 3 inch by 6 inch pine sheeting tongued and grooved, put together tirntly and attached securely to the outer frame work. All of the wood work is covered with an asbestos paint. Whe inner end of the nozzle is secured to the tunnel portal and to the outer end are atitached the outlets of the fans, one on each side of the track. These fans are 7 fect vide and 14 feet in diancter, each coupled to two 12 inch by 14 inch center crank steam engines. The engines are fed from a battery of boilers located a short distance east of the fans.

At 141 revolutions per minute these two fans deliver into and through the tunnel a total of 300,000 cubic feet of fresh air per minute, the measured velocity of the moving currents in the tunnel being 1200 feet per minute. Under the present
operations thesc fans are not speeded up except when trains come to the tumel at either end. The average velocity is then about 120 revolutions per rinute, at which rate the two fans deliver through the tunnel a total of 250,000 cubic feet of air per minute. Under the ordinary plan of operation, the tunnel is cleared in from 7 to 9 minutes after the passase of a full tonnage east bound train, the time being dependent, upon the speed of the fans. After a vest bound train has passed, the tunnel can be cleared in a shorter time.

The result of the installation of this plant has been a prompt clearing of the tunnel arter the passage of each train, and a clear, cool atmosphere on the arrival of each succeeding train. In consequence of this the tonnage loading of east bend trains has been increased from 1700 tons, which was the rating before the installation of this plant, to the present ratincg of 1928 tons.

IIlkhorn.- The Elkhorn tunnel, on the Morfolle and Western Railway, is at Coaldale, West Virginia and crosses the Flat Top Hountain at an elevation of 2386 fect. The tunnel is 3000 feet long, 14 feet wide, 19 feet high and is single track between two sections of double track road. The straight portion of this tunnel is 2167 feet long, 333 feet on the eastern end being a 2 degree curve. Thewestem approach is on an up grade of 2 percent and reduces at the portal to 1.4 percent. This rate of grade extends through to the summit located a fev hundred feet east of the east port,

Before going into detail concerning the plant it would be well to fully comprelend the nature of the traffic through this
tunnel and the conditions thet existed in the Elkhorn tunnel before the mechanical plant was installed.

On the west slope of Tlat Top lountain quite a large percentage of coal is rined and shipped east. This necessitates the hauling of all the coal up the adverse grade and through the tunnel. This is accom lished by the use of two or three locomotives to each train of about 1200 tons. When only two engines are used they are placed, one at the head of the train and the other at the rear. In case three are used one is placed in the middle of the train. Jhe records leept at the time of construction of the mechanicil plant show that the average number of loconotives that pass through the tunnel every 24 hours approach 100. Fast bound trains frequently stand at the west end of the tunnel and follow each other through as quickly as they get the signal that the train ahead has passed from the tunnel. The time usually taken is about 5 minutes.

On account of the heavy grade and the number of engines used in a train the quantity of gases cmitted is very great. Jotes taken prior to ventilation showed that in summer it took from 17 to 55 minutes to clear the tunnel. The shortest time of clearance noted was in winter when it averaced about 20 minutes. It can be seen that when the trains were following each other at intervals of five minutes that each train ciev had not only to contend with the smoke of their own train, but also that of the two or three previous trains. The ternerature inside the tunnel was about 30 degrees higher than the outside atmosphere due to this improper ventilation. During the four years prior to the installation of the plant 26 men were asphyxiated in the tunnel.

In 1900 the Torfolk and Western Railvay decided to ventilate this tiunnel and decided that the best plan to secure the desired positive results was to ventilate it from one end by blowing fresh air through the whole tunnel. The esscntial features of the plant are: the fans of proper dimensions and speed installed at one ond of the tunnel for driving fresh air jnto it at the pressure detemined upon, and the funnel shaped nozzle. This nozzle mas constructed in such a manner as to preserve the cross section of the trunel and at the same time provide a reduced area of outlet throuch which the fresh air can be forced with great velocity. The air is required to leave the nozzle at a high velocity in orde: to insure its passage through the whole lengtr of the tunnei.

The plant was located at the west portal. The reason for this was because the east bound freicht trains have two or three engines, as described above, and it, was desiraile not only to clear the smoke quickly but also to force it away from the cabs and protect the oncinecr and firemen from the smoke of their own engine. The blast was thererore planned of sufficient strength to. drive the gases in front of each east bound engine, instead of permitting it to trail back into the cab.

Tig. 3 shows the General arrangement of the plant. The plant consists of tro fans $1<$ feet in dianeter and each operated by an engine of 75 nominal horse power. The boiler roon was located on one side of the track west of the fans. The fans are capable of makine 140 revolutions per minute and deliver air through the nozzle at the rate of 200,000 cubic feet per minute, or an average velocity of 1700 feet per minute through the tunnel. The

Arrangement of Fans and Nozzle at West Portal ELKHORN TUNNEL

Fig. -3
$1-\cdots$

fans are arranced so that they are controlled by a valve in the boiler housc, and the thole plant operated from one point.

In 1901 several tests were made to determine the condition of the air in the tunnel during the passage of a heavy freight train. A three engine east bound freight loaded with coal passed through the tunnel in 6 minutes while the fans were running at 142. revolutions per minute. The observer on the first engine rode on the tank and reported the tunnel clear two thirds of the way through, and that there was no objectionable smoke anywhere. An observer at the east portal reported that the smoke of the train came out two minutes ahead of the first engine. The observer on the second engine reported the air clear behind and that he could see seven car lengths ahead of the engine. The observer on the rear ongine rode in the cab with the windows open and found the tunnel practically clear and no smoke behind, showing that fresh air was with the engine throughout.

Conditions of operation of this tiunnel are sonewhat similar to those of the Big Bend tunnel, that is, the fans are run slow and only speeded up when a heavy train is about to ascend the grade throuch the tumel. In the Elkhorn tunnel the fans are kept moving at not more than 30 revolutions per minute which is sufficient to keep the tunnel clear and cool except when trains are approaching from the mest. West bound trains, on account of the down grade, enit very little smoke so that 30 revolutions per minute is sufficient to keep the tunnel clear and cool under those conditions. On the approach of an east bound train the fans are run at about 140 revolutions per minute. Whis speed is maintained until the operator at the ventilatinc plant gets the
signal by the track circuit that the train has cleared the tunnel. The fans are then again run at not more than 30 revolutions per minute.

The results that have been obtained at this tunnel are good. The tunnel is always free from snole and the air cool regardless of the number of engines used or the frequency of the trains.

The condition of the rails has been improved and the tonnage loading of the trains has accordingly been increased. Track men now prefer the cool atmosphere of the tunnel than that outside, just reversing the conditions that fomerly existed. After a train has passed through the tunnel, eost bound, it seldom happens that emolse is seen coming out of the east portal longer than one minute after the clearance of the train, and in good Weather the tunnel is clear when the train leaves jt.

EXHAUST CUPREMNS FPON TATS. - Men completed tunnels are ventilated by the exheust currents from fans, the ventilating plant, is usually installed near a central shaft, or at each portal, as in the case of the Boston Subway. Jhis latter position requires several accessories and will be described later in the ventilation of the Jast Boston tunnel.

Position of Pan. - If the fan is installed at the central shaft it is preferable that its location be near the bottorn. The adVantage in placing the fan near the bottom instead of at the top of the shaft is that it is easier to operate. If the fan was located at the top of the shaft there would be a tendency on the part of the oporator to neglect its proper care. A trip up the mountain in all conditions of meather would not at all times be desirable. However, if it is placed near the botrom it is always
accessible and more conveniont for the tender.
llethod of Ventilating.- The method of ventilating a tunnel by the exhaust currents from a fan practically explains itself. The fans are run usually by a motor in such a direction as to exhaust the air from the tunnei and force it up the shaft. This cause fresh air to enter at both portals and provides a complete circulation.

Arrangement of Fans.- The fans are often arranged so that the air currents can be revorsed, forcing the air out through both portals and drawing in the fresh air throvgh the shaft. However, the former method is the more economical and is the one generally used.

Hoosac Tumel.- The Foosac tunnel, on the Boston and Haine Railroad, is ventilated in the mannerdescribed above. This tunnel is 4.7 miles long, 25 fect wide and 22.5 feet high. From each end there is a rising grade toward the center of 0.5%, where there is a shaft 1028 feet deep. The shaft is elliptical in section with diameters of 15 feet and 27 feet. Doors are placed at the portals for use in winter to prevent ice forming in the tunnel.

This tunel was originally intended to be ventilated by natural means but the increase in traffic necessitated the use of an artificial method for clearing the snole. Under natural conditions the shortest time required to clear the tunnel by means of the shaft was obscrived during the minter seasons. The time then observed after the passage of a train until the tunnel was cleared of smoke was 20 minutes.

The ventilating fan mas installed at the top of the shaft
and arranged so as to draw the smoke and cases throuch the shaft. This fan mas operated by a $125 \mathrm{H} . \mathrm{P}$. electric notor, the current being supplied from Iorth Adaras, 5 miles distant.

Boston Subvay. - The Boston Subway Tunnel is about 1.8 miles long and has one double track section and a four track section. All the trains in this tunnel are operated by electric power.

This tunnel is ventilated by exhaust fans set in chambers adjoining the tunnel and spaced about midray betreen stations. These fans are vertical and placed directly against the openings connecting the fan charner with the tunnel. The air is thus drawn from the tunnel and generally discharged upwards through gratings in the street sidewalks, except in two cases where they discharge through low shafts. Presh air enters at the stations and flows each way to the fans. These fans are designed to move the air in the subway at a velocity of 60 feet per minute and to change the air every 10 minutes.

The section between Park Street Station and Boylston Station is four track, its cross section is 707 square feet and the distance between the centers of the stations is 1250 feet. This section which contains 884,000 cubic fect is ventilated by two fans placed midway between the stations, each having a dianeter of eight fect and a rated specd of 225 revolutions per minutie. The ventilation of this Subway Iunnel is said to be good.

East Boston TunneI.- The East Boston Tunnel had to be ventilated somevhat differently than the Boston Subways on account of its harbor portion. All trains are operated by electric power, the same as in the Boston Subway. The double track under the harbor is $23 \mathrm{I} / 3$ feet wide at the springing line of the
arch and has a total cross section of 332 square feet.
The harbor section of the tunnel is provided with a shaft at either end containing the exhaust fans, which are located near the surface. In the crown of the tunnel is a duct with a crose section of 48 square feet. This duct is made by using a diaphragm one inch thick, constructed of expanded metal and concrete, and suspended to the crom of the arch by steel rods and plates incased in the concrete. In the middle of the tunnel a partition divides this duct into two parts and on each side of this partition there are 14 openings, each four fect long and I foot 5 inches ride. There are other groups of cpenings at intervals of 550 feet, the number diminishing as they approach the fan charnoers. The ventilating duct is curved dovmards for the central two thirds of its span. The sidc portions are flat and it is in these that the openings referred to are located. All the openings are fitted with doors and can be operated from the tunnel below. When the movement of the air in the tunnel is not affected by the wind the tro groups of openings near the center are alone used.

The ventilation of the tunnel is accomplished in the following manner. The fans running as exhausts draw fresh air into the portal at East Boston and through the station at Atlantic Avenue on the Boston side. This fresh air from both ends passes to the middle of the tunnel and is dram into the ducts through the openings. The air then passes back through the ducts and out through the fan shafts at either end.

Nersey Tunnel.- The Hersey Tunnel under the River Hersey between Liverpool and Berkenhead, Englend is a good example of

$$
F_{19}-4
$$

$$
=-m-\quad 1+1,1 \mathrm{~mol}=1
$$

succossful ventilation under heavy traffic and crades. This tunnel is 4960 feet long under the river, 26 feet vide, and is double track throughout. The grade in a portion of the tunnel is 3.5\% or about 196 feet to the mile. The principle on which the ventilation was planned was to admit fresh air in at the stations, and draw it either way to points midway between stations, where the ventilating fans are placed.

An auxiliary tunnel or air drift, 7 feet 2 inches in diameter, runs parallel with the main tunnel, and is connected with it and the stations by sliding doors so that air can be drawn from any point desired. The fans are four in number, two 40 feet in diameter and 12 feet wide, and 32 feet in dianeter and 10 feet wide. Their collective capacity is 500,000 cubic feet per minute then running at the average speed of 45 revolutions per minute.

FOI purposes of ventilation the tunnel is divided into four sections, one fan being alloted to each. Ey means of the doors in the air passage the fans can be made to do each others work, so that no complete stoppare of ventilation is possible unless all four fans should brealk down at the same time.

This tunnel has been successfully ventilated by this plant. When the fans were first installed an average of 300 trains passed through the tunnel per day, making an average of one train each way every five minutes. Since then electric equipments have been installed for operating thetrains and the volume of air required has been much decreased.

See Fig. Ifor a general arrangernent of the fans and the direction of the air currents in the lersey Tunnel.

